Modeling chloride transport in cracked concrete: a 3-D image–based microstructure simulation

نویسندگان

  • Yang Lu
  • Edward Garboczi
  • Jeffrey Davis
چکیده

The prediction of the service life of concrete materials is difficult, mainly because of their complex heterogeneous microstructure and their random nature. Studying the presence of cracks in concrete and their effect on chloride transport and binding properties is of great interest in civil engineering. Cracks with different widths and depths will reduce the effective cover thickness and accelerate the transport of chloride ions. So, it is highly desirable to develop a model predicting the chloride diffusion depth in cracked concrete while considering the real microstructure including cement paste, voids, and aggregates. While current models consider concrete at various levels of complexity in predicting the initiation of chloride-induced corrosion, considering the influence of cracking is generally beyond their scope. In this study, a 3-D image-based microstructure simulation procedure was developed to model the chloride ingress in cracked concrete. A micro-X-ray fluorescence (XRF) test was conducted to measure the chloride concentration profile of a concrete sample. The notched concrete sample was put in a chloride ponding test for 30 days before the micro-XRF measurement. A 2-D simulation result, with a mesh based directly on the XRF characterization of microstructure, showed good agreement with the micro-XRF measurement. With this validation, two different 3-D concrete microstructures were generated and meshed in 3-D and a commercial software package was used to accurately compute the influence of cracking on chloride diffusion with binding. The chloride concentration gradient in the crack changed the concentration profile along the crack and nearby irregular aggregate surfaces continuously. Comparison to micro-XRF measurement data indicates that the contributions of the crack play a significant role in the chloride ingress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement and Modeling of the Ability of Crack Fillers to Prevent Chloride Ingress into Mortar.

A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, bu...

متن کامل

Equilibrium condition nonlinear modeling of a cracked concrete beam using a 2D Galerkin finite volume solver

A constitutive model based on two–dimensional unstructured Galerkin finite volume method (GFVM) is introduced and applied for analyzing nonlinear behavior of cracked concrete structures in equilibrium condition. The developed iterative solver treats concrete as an orthotropic nonlinear material and considers the softening and hardening behavior of concrete under compression and tension by using...

متن کامل

Mesoscale Modelling of the Chloride Diffusion in Cracks and Cracked Concrete

In service, cracks or microcracks are usually present in concrete as a result of several mechanisms, for example the drying shrinkage, thermal gradients, freezing-thawing cycles, alkali-aggregate reaction and external loading. It has been realized that cracking can significantly accelerate the ingress of chlorides into concrete since it provides preferential flow channels and allow more chlorid...

متن کامل

Effect of Transverse Crack on Chloride Penetration into Concrete Subjected to Dryingâ•fiWetting Cycles

In this paper, several transversely cracked RC beams, self-anchored in a three-point bending mode, were prepared and subjected to NaCl solution drying–wetting cycles. Based on two experimental results obtained after 15 and 30 cycles, respectively, the profiles of free chloride concentration at different sections of sound and cracked concretes were presented and analyzed. The depth of surface co...

متن کامل

Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars

0958-9465/$ see front matter Published by Elsevier doi:10.1016/j.cemconcomp.2009.03.001 * Tel.: +1 301 975 5865; fax: +1 301 990 6891. E-mail address: [email protected] The microstructure of the interfacial transition zone (ITZ) between cement paste and aggregate depends strongly on the nature of the aggregate, specifically its porosity and water absorption. Lightweight aggregates (LWA) with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012